Outline	Bounded Forcing Axioms		An open question

BPFA and BAFA

Their equiconsistency and their nonequivalence

Thilo Weinert

February 4, 2009

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Outline	Bounded Forcing Axioms		

- Axiom A
- The strengthened proper game
- Σ_n -correct cardinals

2 Bounded Forcing Axioms

- Their definition
- A remedy for Axiom A
- Some facts
- A proper forcing failing to satisfy Axiom A*

B How to attain a model of BPFA

- A model of BPFA
- The diagram

0 BAAFA \Rightarrow BPFA

- Technical remarks
- An analogous construction
- Why BPFA fails

5 An open question

< A >

∃ ⊳ -

	Basics ●○○	Bounded Forcing Axioms		
Axiom A				

Definition (Baumgartner, 1983)

A poset (P, \leq_0) satisfies Axiom A if and only if

- There exists a countably infinite sequence $\leqslant_0, \leqslant_1, \leqslant_2, \ldots$ of partial orders on the set P such that
- $p \leq_{n+1} q$ implies $p \leq_n q$ for all $n < \omega$ and all $p, q \in P$.
- Given $p_0 \ge_0 p_1 \ge_1 p_2 \ge_2 \dots$ there exists a condition $q \in P$ such that $q \leqslant_n p_n$ for all $n < \omega$.
- Given $p \in P$, an antichain $A \subset P$ and an $n < \omega$ there exists a $q \leq_n p$ such that $\{r \in A | r \|_0 q\}$ is countable.

Examples

- Whatever forcing satisfies the ccc does also satisfy Axiom A.
- Proof: Let \leq_n be the identity for all $n \in \omega \setminus 1$.
- Any countably closed notion of forcing satisfies Axiom A.
- Proof: Let \leq_n be \leq_0 for all $n \in \omega \setminus 1$.

・ロッ ・雪 ・ ・ ヨ ・

3

	Basics ○●○	Bounded Forcing Axioms		
The strength	ened proper g	game		

Let \mathbb{P} be a poset and p a condition of \mathbb{P} . The strengthened proper game for \mathbb{P} below p is played as follows:

- In move *n* Player I plays a \mathbb{P} -name for an ordinal $\dot{\alpha}_n \dots$
- ... to which Player II responds by playing a countable set of ordinals B_n .

Player II wins iff there is a $q \leq p$ such that $q \Vdash_{\mathbb{P}} ``\forall n < \omega : \dot{\alpha}_n \in \check{B}_n"$.

Remark

Whenever Player II has a winning strategy in the strengthened proper game for \mathbb{P} below p she has one in the proper game for \mathbb{P} below p.

(III) (III) (III) (III)

	Basics ○○●	Bounded Forcing Axioms		An open question
Σ_n -correct	cardinals			

An ordinal α is Σ_n -correct iff $V_\alpha \prec_{\Sigma_n} V$.

Fact

The regular Σ_1 -correct cardinals are precisely the inaccessible ones.

Fact

There are unboundedly many regular Σ_n -correct cardinals below any regular Σ_{n+1} -correct cardinal.

Fact

For any $n < \omega$ there are stationarily many regular Σ_n -correct cardinals below the first Mahlo cardinal.

・ロト ・ 雪ト ・ ヨト ・ ヨト

э

		Bounded Forcing Axioms ●○○○		
Their definit	ion			

Let κ, λ be cardinals and C be a class of forcing notions. The Bounded Forcing Axiom for C and κ , bounded by λ —BFA(C, κ, λ) for short—asserts the following: If \mathbb{P} is a forcing notion in C and \mathcal{A} is a family of less than κ maximal antichains each of which has size less than λ , there is a filter $G \subset \mathbb{P}$ such that $\forall A \in \mathcal{A} : A \cap G \supseteq 0$.

E >

э.

		Bounded Forcing Axioms ●○○○		
Their definit	ion			

Let κ, λ be cardinals and C be a class of forcing notions. The Bounded Forcing Axiom for C and κ , bounded by λ —BFA(C, κ, λ) for short—asserts the following: If \mathbb{P} is a forcing notion in C and \mathcal{A} is a family of less than κ maximal antichains each of which has size less than λ , there is a filter $G \subset \mathbb{P}$ such that $\forall A \in \mathcal{A} : A \cap G \supseteq 0$.

Examples

- The Bounded Proper Forcing Axiom BPFA is $BFA(\mathfrak{B} \cap \mathcal{P}_{rop}, \aleph_2, \aleph_2)$.
- Bounded Martins Maximum BMM is $BFA(\mathfrak{B} \cap ssp, \aleph_2, \aleph_2)$.
- Martin's Axiom for \aleph_1 MA $_{\aleph_1}$ (MA +¬ CH) is BFA($\mathfrak{B} \cap c.c.c., \aleph_2, \aleph_1$) or BFA(c.c.c., \aleph_2, Ω).

・ロッ ・雪 ・ ・ ヨ ・

		Bounded Forcing Axioms ●○○○		
Their definit	ion			

Let κ, λ be cardinals and C be a class of forcing notions. The Bounded Forcing Axiom for C and κ , bounded by λ —BFA(C, κ, λ) for short—asserts the following: If \mathbb{P} is a forcing notion in C and \mathcal{A} is a family of less than κ maximal antichains each of which has size less than λ , there is a filter $G \subset \mathbb{P}$ such that $\forall A \in \mathcal{A} : A \cap G \supseteq 0$.

Examples

- The Bounded Proper Forcing Axiom BPFA is $BFA(\mathfrak{B} \cap \mathcal{P}_{rop}, \aleph_2, \aleph_2)$.
- Bounded Martins Maximum BMM is $BFA(\mathfrak{B} \cap ssp, \aleph_2, \aleph_2)$.
- Martin's Axiom for $\aleph_1 \operatorname{MA}_{\aleph_1}(\operatorname{MA} + \neg \operatorname{CH})$ is $\operatorname{BFA}(\mathfrak{B} \cap \operatorname{c.c.c.}, \aleph_2, \aleph_1)$ or $\operatorname{BFA}(\operatorname{c.c.c.}, \aleph_2, \Omega)$.

Theorem (Bagaria, 2000)

If $\kappa = \lambda$ and $\mathcal{C} \subset \mathfrak{B}$ the corresponding statement is equivalent to a principle of generic absoluteness, i.e.

 $BFA(\mathcal{C},\kappa,\kappa) \iff ``All \Sigma_1 \text{-statements with parameters from } H_{\kappa}$

forcable by a forcing notion from ${\mathcal C}$ are true."

		Bounded Forcing Axioms		
A remedy fo	r Axiom A			

Definition (W.)

- A class of forcing notions C is called reasonable iff for any forcing notion $\mathbb{P} \in C$, an arbitrary forcing notion \mathbb{Q} and a complete Boolean algebra \mathbb{B} the following holds: If there are dense embeddings $\delta_{\mathbb{P}} : \mathbb{P} \longrightarrow \mathbb{B}, \delta_{\mathbb{Q}} : \mathbb{Q} \longrightarrow \mathbb{B}$, then $\mathbb{Q} \in C$.
- The reasonable hull $\mathfrak{rh}(C)$ of a class of forcing notions \mathcal{C} consists of all forcing notions \mathbb{P} such that there exists a forcing notion $\mathbb{Q} \in \mathcal{C}$, a complete Boolean algebra \mathbb{B} and dense embeddings $\delta_{\mathbb{P}} : \mathbb{P} \longrightarrow \mathbb{B}$, $\delta_{\mathbb{Q}} : \mathbb{Q} \longrightarrow \mathbb{B}$.
- Let $\mathcal{A}^* := \mathfrak{rh}(\mathcal{A})$ be the class of forcing notions satisfying Axiom A^{*}.

・ロッ ・雪ッ ・ヨッ

		Bounded Forcing Axioms		
A remedy fo	r Axiom A			

Definition (W.)

- A class of forcing notions \mathcal{C} is called reasonable iff for any forcing notion $\mathbb{P} \in \mathcal{C}$, an arbitrary forcing notion \mathbb{Q} and a complete Boolean algebra \mathbb{B} the following holds: If there are dense embeddings $\delta_{\mathbb{P}} : \mathbb{P} \longrightarrow \mathbb{B}, \delta_{\mathbb{Q}} : \mathbb{Q} \longrightarrow \mathbb{B}$, then $\mathbb{Q} \in \mathcal{C}$.
- The reasonable hull $\mathfrak{rh}(C)$ of a class of forcing notions C consists of all forcing notions \mathbb{P} such that there exists a forcing notion $\mathbb{Q} \in C$, a complete Boolean algebra \mathbb{B} and dense embeddings $\delta_{\mathbb{P}} : \mathbb{P} \longrightarrow \mathbb{B}$, $\delta_{\mathbb{Q}} : \mathbb{Q} \longrightarrow \mathbb{B}$.
- Let $\mathcal{A}^* := \mathfrak{rh}(\mathcal{A})$ be the class of forcing notions satisfying Axiom A^{*}.

Remark

ssp, \mathcal{P}_{rop} and \mathcal{A}^* are reasonable.

Definition (W.)

BAAFA : \iff BFA($\mathfrak{B} \cap \mathcal{A} \mathfrak{A}^*, \aleph_2, \aleph_2$) is the Bounded Axiom A Forcing Axiom.

	Bounded Forcing Axioms		
Some facts			

Theorem (Todorčević)

 $BAFA \Rightarrow \aleph_2$ is regular and Σ_2 -correct in L.

Theorem (Moore, 2005)

 $BPFA \Rightarrow 2^{\aleph_0} = \aleph_2$

	Bounded Forcing Axioms		
Some facts			

Theorem (Todorčević)

 $BAFA \Rightarrow \aleph_2$ is regular and Σ_2 -correct in L.

Theorem (Moore, 2005)

 $BPFA \Rightarrow 2^{\aleph_0} = \aleph_2$

Lemma

Whenever \mathbb{P} is a notion of forcing satisfying Axiom A^* and $p \in \mathbb{P}$, Player II has a winning strategy in the strengthened proper game for \mathbb{P} below p.

Corollary

If a notion of forcing satisfies Axiom A^* then it is proper.

・ロッ ・雪 ・ ・ ヨ ・

э

		Bounded Forcing Axioms		
		0000		
A proper for	cing failing to	satisfy Axiom A*		

Example (Adding a club with finite conditions)

Consider the following notion of forcing:

 $\mathbb{P}_{\text{acfc}} := \{ p | \overline{p} < \aleph_0 \land \operatorname{ran}(p) \subset \aleph_1 \land \exists f \supset p : f \text{ is a normal function.} \}$

Lemma

 \mathbb{P}_{acfc} is proper.

Lemma

 \mathbb{P}_{acfc} does not satisfy Axiom A^* .

3

		Bounded Forcing Axioms	How to attain a model of $BPFA$	
A model of	BPFA			

Theorem (Shelah, 1983)

The countable support iteration of proper notions of forcing is proper.

Fact

If κ is regular and Σ_2 -correct and $\mathbb{P} \in H_{\kappa}$ then $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} ``\kappa$ is regular and Σ_2 -correct.".

Fact

Being proper is a Σ_2 -property.

・ロッ ・雪 ・ ・ ヨ ・

э.

		Bounded Forcing Axioms	How to attain a model of $BPFA$	
A model of	BPFA			

Theorem (Shelah, 1983)

The countable support iteration of proper notions of forcing is proper.

Fact

If κ is regular and Σ_2 -correct and $\mathbb{P} \in H_{\kappa}$ then $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} ``\kappa$ is regular and Σ_2 -correct.".

Fact

Being proper is a Σ_2 -property.

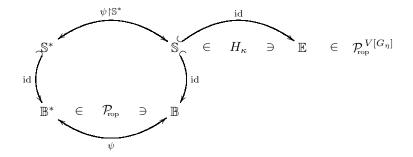
Theorem (Shelah, 1995)

If κ is regular and Σ_2 -correct there is a forcing iteration \mathbb{P}_{κ} which is proper and satisfies the κ -c.c. such that

 $V[G] \models$ "ZFC + BPFA"

・ロッ ・雪 ・ ・ ヨ ・

	Bounded Forcing Axioms	How to attain a model of $BPFA$	
The diagram			



< □ > < /₽ >

< ≣ >

æ

≣⇒

		Bounded Forcing Axioms	$\begin{array}{c} \mathbf{B}\mathbf{A}\mathbf{F}\mathbf{A} \not\Rightarrow \mathbf{B}\mathbf{P}\mathbf{F}\mathbf{A} \\ \bullet \circ \circ \circ \circ \circ \circ \end{array}$	
Technical re	marks			

Theorem (Koszmider, 1993)

The countable support iteration of Axiom A forcings satisfies Axiom A.

Corollary

The countable support iteration of Axiom A^* forcings satisfies Axiom A^* .

Fact

To satisfy Axiom A^* is a Σ_2 -property.

・ロッ ・雪 ・ ・ ヨ ・

э.

		Bounded Forcing Axioms	$\begin{array}{c} \mathbf{B}\mathbf{A}\mathbf{F}\mathbf{A} \not\Rightarrow \mathbf{B}\mathbf{P}\mathbf{F}\mathbf{A} \\ \bullet \circ \circ \circ \circ \circ \circ \circ \end{array}$	
Technical re	marks			

Theorem (Koszmider, 1993)

The countable support iteration of Axiom A forcings satisfies Axiom A.

Corollary

The countable support iteration of Axiom A* forcings satisfies Axiom A*.

Fact

To satisfy Axiom A^* is a Σ_2 -property.

Proof.

 $\exists \mathbb{B}, Q, X, \langle \leqslant^n | n < \omega \rangle, \delta_{\mathbb{P}}, \delta_{\mathbb{Q}}, f\left(\mathbb{B} \text{ is a complete Boolean algebra, } \delta_{\mathbb{P}} \text{ is a dense} \right. \\ embedding of <math>\mathbb{P} \text{ into } \mathbb{B}, \forall S \subset Q : S \in X, \operatorname{dom}(f) = Q \times X \times \omega \times \omega, \forall n < \omega (\leqslant^n \text{ is a partial ordering of } Q \text{ and } \forall p, q \in Q(p \leqslant^{n+1} q \to p \leqslant^n q)), \delta_{\mathbb{Q}} \text{ is a dense embedding of } (Q, \leqslant^0) \text{ into } \mathbb{B}, \forall \langle q_n | n < \omega \rangle ((\forall n < \omega : q_{n+1} \leqslant^n q_n) \to \exists q \in Q \forall n < \omega : q \leqslant^n q_n)$ and $\forall q \in Q \forall n < \omega \forall A \in X(A \text{ is an antichain} \to \exists r \in Q(r \leqslant^n q \land \{s \in A | s \|^0 r\} \subset f``(\{q\} \times \{A\} \times \{n\} \times \omega)))$

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○●○○○○	
An analogou	is construction			

Theorem (W., 2007)

If κ is regular and Σ_2 -correct then there is a forcing \mathbb{Q}_{κ} satisfying both Axiom A^* and the κ -c.c. such that in the generic extension we have

 $\operatorname{ZFC} + 2^{\aleph_0} = 2^{\aleph_1} = \aleph_2 + \operatorname{BAFA} + \neg \operatorname{BPFA}$

First part of the proof.

One defines a forcing iteration analogous to the one above. Simply substitute "Axiom A^* " for "proper" throughout the whole construction. This shows that

$$V[G] \models \operatorname{ZFC} + 2^{\aleph_0} = 2^{\aleph_1} = \aleph_2 + \operatorname{BAFA}$$

-

3

・ロッ ・雪 ・ ・ ヨ ・

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○●000	
Why BPFA	fails			

Lemma

 $p \in \mathbb{P}_{acfc}$ is a $\Delta_1(\{\aleph_1, p\})$ -relation.

Proof.

The original definition yields the $\Sigma_1(\{\aleph_1\})$ -definition:

$$\exists f \supset p \big(f \in \operatorname{Func} \land \forall \alpha, \beta \in \operatorname{dom}(f) (\alpha < \beta \to f(\alpha) < f(\beta)) \\ \land \forall \alpha \in \operatorname{Lim} \cap \operatorname{dom}(f), \beta < f(\alpha) \exists \gamma < \alpha : f(\gamma) > \beta \big).$$

A $\Pi_1(\{\aleph_1\})$ -definition is provided by the following formula:

$$\begin{split} p \in \operatorname{Func} \wedge \operatorname{dom}(p) \subset \aleph_1 \wedge \nexists g : \omega &\hookrightarrow \operatorname{dom}(p) \wedge \forall g, \langle g_\gamma | \gamma < \beta \rangle, \alpha \in \operatorname{dom}(p) \\ \left((\alpha < \beta \wedge \beta \in \operatorname{dom}(p) \wedge \nexists \gamma \in \operatorname{dom}(p) : \alpha < \gamma \wedge \gamma < \beta) \to (p(\alpha) < p(\beta) \wedge \beta \leq p(\beta) \wedge \nexists \gamma < \beta(g : p(\beta) \setminus p(\alpha) \longrightarrow \gamma \setminus \alpha \text{ is order-preserving.}) \wedge (\beta \in \operatorname{Lim} \rightarrow \forall \gamma < p(\beta) \exists \eta < \beta \nexists \zeta < \beta(g_\eta : p(\beta) \setminus \gamma \longrightarrow \zeta \setminus \eta \text{ is order-preserving.})) \right) \end{split}$$

Corollary

 \mathbb{P}_{acfc} is identical in any two transitive models of set theory which share their $\aleph_1.$

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○0●00	
Why BPFA	fails			

Lemma

Let $\langle \alpha_n | n < \omega \rangle$ be a sequence of countable indecomposable ordinals and $\langle \beta_n | n < \omega \rangle$ a sequence of ordinals such that $\forall n < \omega : \beta_n < \alpha_{n+1}$. The following sets are dense in \mathbb{P}_{acb} :

$$D_{\langle \beta_n | n < \omega \rangle}^{\langle \alpha_n | n < \omega \rangle} := \{ p \in \mathbb{P}_{\!\!adc} | \exists n < \omega, \gamma \in \aleph_1 \setminus \beta_n : (\alpha_n, \gamma) \in q \}$$

Proposition

 $1\!\!1_{\mathbb{Q}} \Vdash_{\mathbb{Q}_{\kappa}} \text{``}\neg BFA(ro(\mathbb{P}_{acfc}), \aleph_2, \aleph_2)\text{''}.$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○OO●O	
Why BPFA	fails			

Proof.

Suppose $q \Vdash_{\mathbb{Q}_{\kappa}}$ "BFA $(ro(\mathbb{P}_{acfc}), \aleph_2, \aleph_2)$ ".

 $\mathcal{D} := \{ D | D \subset \mathbb{P}_{acfc} \land D \text{ is dense.} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○OO●O	
Why BPFA	fails			

Proof.

Suppose $q \Vdash_{\mathbb{Q}_{\kappa}}$ "BFA $(\operatorname{ro}(\mathbb{P}_{acfc}), \aleph_2, \aleph_2)$ ".

$$\mathcal{D} := \{ D | D \subset \mathbb{P}_{acfc} \land D \text{ is dense.} \}$$

Let $G \ni q$ be \mathbb{Q}_{κ} -generic and $\mathbb{B} := \mathrm{ro}^{V[G]}(\mathbb{P}_{acfc}), \ \delta : \mathbb{P}_{acfc} \longrightarrow \mathbb{B}$ the corresponding dense embedding and $\mathcal{D}_{\mathbb{B}} := \{\delta^{``}D | D \in \mathcal{D}\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○OO●O	
Why BPFA	fails			

Proof.

Suppose $q \Vdash_{\mathbb{Q}_{\kappa}}$ "BFA $(\operatorname{ro}(\mathbb{P}_{acfc}), \aleph_2, \aleph_2)$ ". $\mathcal{D} := \{D \mid D \subset \mathbb{P}_{acfc} \land D \text{ is dense.}\}$ Let $G \ni q$ be \mathbb{Q}_{κ} -generic and $\mathbb{B} := \operatorname{ro}^{V[G]}(\mathbb{P}_{acfc}), \delta : \mathbb{P}_{acfc} \longrightarrow \mathbb{B}$ the corresponding dense embedding and $\mathcal{D}_{\mathbb{B}} := \{\delta^{``}D \mid D \in \mathcal{D}\}.$ \mathbb{B} is proper. So

 $q \Vdash_{\mathbb{Q}_{\kappa}} ``\exists H : H \text{ is a } \check{\mathcal{D}}_{\mathbb{B}}\text{-generic filter over } \mathbb{B}."$

Define a normal function in V[G]:

$$\begin{split} f : \aleph_1 & \longrightarrow \aleph_1 \\ \alpha & \longmapsto the \ \beta < \aleph_1 \ such \ that \ \exists p \in \mathbb{P}_{acfc} \big(\alpha \in \operatorname{dom}(p) \land p(\alpha) = \beta \land \delta(p) \in H \big) \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○000●	
Why BPFA	. fails			

- In move 0 play 0 (or any other ordinal name).
- In move n our opponent plays a $B_n \in [\Omega]^{<\omega_1}$.
- In move n + 1 we choose an indecomposable countable ordinal α_{n+1} greater than $\beta_n := \sup B_n + 1$ and play $f(\alpha_{n+1})$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○000●	
Why BPFA	fails			

- In move 0 play 0 (or any other ordinal name).
- In move n our opponent plays a $B_n \in [\Omega]^{<\omega_1}$.
- In move n + 1 we choose an indecomposable countable ordinal α_{n+1} greater than $\beta_n := \sup B_n + 1$ and play $f(\alpha_{n+1})$.

This yields a sequence of indecomposable ordinals $(\alpha_n|n < \omega)$ and a sequence of ordinals $(\beta_n|n < \omega)$ such that $\forall n < \omega : \beta_n < \alpha_{n+1}$. $D_{\langle \alpha_n|n < \omega \rangle}^{\langle \alpha_n|n < \omega \rangle}$ is dense and in V, since our game was played there. Let Λ be a name for H, then

$$q \Vdash_{\mathbb{Q}_{\kappa}} ``\Lambda \cap \dot{\delta}``D_{\langle \beta_n \mid n < \omega \rangle}^{\langle \alpha_n \mid n < \omega \rangle} \supsetneq \emptyset''.$$

$$\tag{1}$$

(日) (同) (ヨ) (ヨ)

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○0000	
Why BPFA	fails			

- In move 0 play 0 (or any other ordinal name).
- In move n our opponent plays a $B_n \in [\Omega]^{<\omega_1}$.
- In move n + 1 we choose an indecomposable countable ordinal α_{n+1} greater than $\beta_n := \sup B_n + 1$ and play $\dot{f}(\alpha_{n+1})$.

This yields a sequence of indecomposable ordinals $(\alpha_n|n < \omega)$ and a sequence of ordinals $(\beta_n|n < \omega)$ such that $\forall n < \omega : \beta_n < \alpha_{n+1}$. $D_{\langle \alpha_n|n < \omega \rangle}^{\langle \alpha_n|n < \omega \rangle}$ is dense and in V, since our game was played there. Let Λ be a name for H, then

$$q \Vdash_{\mathbb{Q}_{\kappa}} ``\Lambda \cap \dot{\delta} ``D_{\langle \beta_{n} \mid n < \omega \rangle}^{\langle \alpha_{n} \mid n < \omega \rangle} \supsetneq \emptyset ".$$

$$\tag{1}$$

(ロ) (伺) (ヨ) (ヨ) 三日

Let $s \leq_{\mathbb{Q}_{\kappa}} q$ be arbitrarily chosen. By (1) there is a $p \in D_{\langle \beta_n | n < \omega \rangle}^{\langle \alpha_n | n < \omega \rangle}$ and $u \leq_{\mathbb{Q}_{\kappa}} s$ such that $u \Vdash_{\mathbb{Q}_{\kappa}} ``\dot{\delta}(\check{p}) \in \Lambda"$. By definition of $D_{\langle \beta_n | n < \omega \rangle}^{\langle \alpha_n | n < \omega \rangle}$ there are $n < \omega, \gamma \in \aleph_1 \setminus \beta_n$ such that $(\alpha_n, \gamma) \in p$. But then $u \Vdash_{\mathbb{Q}_{\kappa}} ``\dot{f}(\alpha_n) = \check{\gamma}"$ hence $u \Vdash_{\mathbb{Q}_{\kappa}} ``\dot{f}(\alpha_n) \notin \check{B}_n"$.

		Bounded Forcing Axioms	BAAFA ≯ BPFA ○○000●	
Why BPFA	fails			

- In move 0 play 0 (or any other ordinal name).
- In move n our opponent plays a $B_n \in [\Omega]^{<\omega_1}$.
- In move n + 1 we choose an indecomposable countable ordinal α_{n+1} greater than $\beta_n := \sup B_n + 1$ and play $f(\alpha_{n+1})$.

This yields a sequence of indecomposable ordinals $(\alpha_n|n < \omega)$ and a sequence of ordinals $(\beta_n|n < \omega)$ such that $\forall n < \omega : \beta_n < \alpha_{n+1}$. $D_{\langle \alpha_n|n < \omega \rangle}^{\langle \alpha_n|n < \omega \rangle}$ is dense and in V, since our game was played there. Let Λ be a name for H, then

$$q \Vdash_{\mathbb{Q}_{\kappa}} ``\Lambda \cap \dot{\delta}^{``}D_{\langle \beta_{n} \mid n < \omega \rangle}^{\langle \alpha_{n} \mid n < \omega \rangle} \supsetneq \emptyset ".$$

$$\tag{1}$$

(ロ) (伺) (ヨ) (ヨ) 三日

Let $s \leq_{\mathbb{Q}_{\kappa}} q$ be arbitrarily chosen. By (1) there is a $p \in D_{\langle \beta_n | n < \omega \rangle}^{\langle \alpha_n | n < \omega \rangle}$ and $u \leq_{\mathbb{Q}_{\kappa}} s$ such that $u \Vdash_{\mathbb{Q}_{\kappa}} "\dot{\delta}(\check{p}) \in \Lambda"$. By definition of $D_{\langle \beta_n | n < \omega \rangle}^{\langle \alpha_n | n < \omega \rangle}$ there are $n < \omega, \gamma \in \aleph_1 \setminus \beta_n$ such that $(\alpha_n, \gamma) \in p$. But then $u \Vdash_{\mathbb{Q}_{\kappa}} "f(\alpha_n) = \check{\gamma}"$ hence $u \Vdash_{\mathbb{Q}_{\kappa}} "f(\alpha_n) \notin \check{B_n}"$.

	Bounded Forcing Axioms		An open question

	Bounded Forcing Axioms		An open question

Does BAFA decide the size of the continuum?